\qquad
\qquad
\qquad
Sirindhorn International Institute of Technology Thammasat University

Sample Midterm Examination

Course Title: ECS203 (Basic Electrical Engineering)
Instructor: Asst. Prof. Dr.Prapun Suksompong
Date/Time (for the real exam): \quad March 8, 2016 / 13:30-16:30

Instructions:

$>$ This examination has..... 10pages (including this cover page).
$>$ Conditions of Examination:
.............Closed book
(No dictionary, \square No calculator $\boldsymbol{\square}$ Calculator (e.g. FX-991MS) allowed)
.............Open book
$\ldots \quad \checkmark$.........Semi-Closed book (.................sheet(s) $\square 1$ page \square both sides of A4 paper note) This sheet must be hand-written. It should be submitted with the exam.
$>$ Read these instructions and the questions carefully.
$>$ Students are not allowed to be out of the examination room during examination. Going to the restroom may result in score deduction.
$>$ Turn off all communication devices and place them with other perso al bongings in the area designated by the proctors or outside the test room.
$>$ Write your name, student ID, section, and seat number clea y in the sps provided on the top of this sheet. Then, write your first name and the hst re digits of your ID in the spaces provided on the top of each page of your exami tion par, stuning from page 2.
$>$ The back of each page will not be graded: ic an bused fo, calculations of problems that do not require explanation.
$>$ The examination paper is not allowed remove the staple. Violation m resul s score deduction.
$>$ Unless instructed otherwise, wnter wn atme steps that you have done to obtain your answers. - When applying fermande are arly which formula(s) you are applying before pluggingin numerical vas s. $<$

- You may hot a crave when your final answer is correct without showing how you get y r nswe,
- Formula(s) ot discussed in class can be used. However, derivation must also be provided.
> When not explic)y stated/defined, all notations and definitions follow ones given in lecture.
$>$ For the calculation of absorbed power, if the power is actually supplied by the element, then your corresponding answer will be negative.
$>$ Units are important.
$>$ Some points are reserved for accuracy of the answers and also for reducing answers into their simplest forms.
> Points marked with * indicate challenging problems.
$>$ Do not cheat. Do not panic. Allocate your time wisely.

1. $(22 \mathrm{pt})$ Consider the circuit shown in Figure 1. Some branch voltage and current values are provided below. For this question, only the answers are required. There is no need to show your calculation.
outer loop
$6+9+v_{3}-10=0$
Figure 1

a. $(5 \mathrm{pt})$ Find the rest of the voltage and current values. Put your answers in the appropriate spaces above.
b. (3 pt) Find $V_{B A}$ and $V_{B C}$.

$$
V_{B A}=-V_{2}=-9 \mathrm{~V} \text { and } V_{B C}=-4 \mathrm{~V} .
$$

c. $(3 \mathrm{pt})$ Find the power absorbed by element 1 and the power absorbed by element 4. (Note that if the power is actually supplied by the element, then your corresponding answer will be negative.)

$$
P_{1}=\underline{V}_{1} I_{1}=18 \mathrm{~W} \text { and } P_{4}=\Sigma_{I_{4}} V_{4}=(-4)(15)=-60 \mathrm{~W}
$$

d. (1.5 pt) Can element 1 be a resistor?

If yes, find its resistance. If no, provide reason.

$$
\text { Yes, } \quad V_{1}=I_{1} R_{1} \Rightarrow R_{1}=\frac{V_{1}}{I_{1}}=\frac{6}{3}=2 \Omega
$$

e. $(1.5 \mathrm{pt})$ Can element 4 be a resistor?

If yes, find its resistance. If no, provide reason.

$$
\text { No, } P_{4}<0 \text {; so it supplies power. Resistor con't supply }
$$

f. (4 pt) Suppose node \mathbf{A} is selected as the reference (ground) node. Find the values of all node voltages in the circuit.

$$
\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=-9 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-15 \mathrm{~V} .
$$

g. (4 pt) Suppose node B is selected as the reference (ground) node. Find the values of all node voltages in the circuit.

$$
V_{\mathrm{A}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-6 \mathrm{~V} .
$$

2. (5 pt) Suppose you want to use a 40Ω resistor but you only have one 20Ω resistor, one 30Ω resistor, and one 60Ω resistor. How would you connect the three resistors to get 40Ω ?
Draw how the three resistors are connected and show your calculation of the equivalent resistance.

3. (29 pt) In this question, you must use the specified techniques to solve the problem. There will be no credit given if you do not follow the instructions. As always, your score depends strongly on your explanation of your answer. If the explanation is incomplete, zero score may be given even when the final answer is correct.

Let

$$
\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \text { and } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=2 \Omega .
$$

Use the above values for all parts of this question.

a. (6 pt) Consider the circuit in Figure 2. Find I_{3} by first applying source transformation once and then use any method of your choice to find I_{3}.
b. (6 pt) Use nodal analysis to obtain V_{a} in Figure 3. Then, use V_{a} and the resistance value(s) to find I_{3}.

Figure 3

1 A.
c. (6 pt) Use mesh analysis to find all mesh currents in Figure 4. Then, use the mesh current(s) to find I_{3}.

$$
\begin{aligned}
& \dot{i}_{1}=2 \mathrm{~A} \\
& \dot{i}_{2}=1 \mathrm{~A} \\
& I_{3}=1 \mathrm{~A}
\end{aligned}
$$

d. (6 pt) In this part, we will find the Norton equivalent of the circuit (with respect to terminals a and b) in Figure 5.

Figure 5
i. Draw the circuit that is used to find I_{N} (from its definition) and then find I_{N}.
ii. Draw the circuit that is used to find R_{N} from Figure 5 and then find R_{N}.
iii. Draw the Norton equivalent of the circuit in Figure 5.

e. (5 pt) Use your answers from part (d) to determine I_{3} in Figure 2.
\qquad ID

1
4. $(3 \% \mathrm{pt})$ In this question, you must use the specified techniques to solve the problem. There will be no credit given if you do not follow the instructions. As always, your score depends strongly on your explanation of your answer. If the explanation is incomplete, zero score may be given even when the final answer is correct.

Use the following values for all parts of this question:

$$
\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}, \mathrm{IS}_{\mathrm{S}}=2 \mathrm{~A}, \mathrm{R}_{1}=\mathrm{R}_{2}=3 \Omega \text {, and } \mathrm{R}_{3}=\mathrm{R}_{4}=6 \Omega
$$

Consider the circuit in Figure 6.

Figure 6
a. (5 pt) Use source transformation(s), resistor combination(s), source combination(s) and one application of the yoltare-divider formula to find i. curvent
b. $(8 \mathrm{pt}) \mathrm{We}$ will now use superposition theorem to find i.
(bi) (3 pt) Draw the sub-circuit when only Is is activated. Then, find i for this sub-circuit using any techniques) of your choice.

(b.ii) (3 pt) Draw the sub-circuit when only Vs is activated. Then, find i for this sub-circuit using any technique (s) of your choice.

(b.iii) (2 pt) Use i from parts (bi) and (b.ii) to find i in Figure 6.

$$
\text { Superposition: } \mu=\frac{4}{3}+\left(-\frac{1}{3}\right)=\frac{3}{3}=1 \mathrm{~A}
$$

c. (5 pt) Use nodal analysis to find $\mathbf{V}_{\mathbf{a}}$ and $\mathbf{V}_{\mathbf{b}}$ in Figure 6 and then find i from V_{b}.

$$
\begin{aligned}
v_{a} & =0 v \\
v_{b} & =6 \mathrm{~V} \\
i & =1 \mathrm{~A}
\end{aligned}
$$

d. $(5 \mathrm{pt})$ Determine R_{th} and V_{th} at terminals b-c of the circuit in Figure 7.

$v_{T H}=9 \mathrm{~V}$
e. $(5 \mathrm{pt})$ Use your answers from part (d) to help determine i in Figure 6.
f. (3 pt) Determine R_{N} and I_{N} at terminals b-c of the circuit in Figure 7.

$$
R_{N}=3 \Omega, \quad I_{N}=3 \mathrm{~A}
$$

5. (6 pt) Consider the circuit in Figure 8. Suppose

$$
\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~A}, \mathrm{R}_{1}=\mathrm{R}_{2}=3 \Omega, \text { and } \mathrm{R}_{4}=6 \Omega .
$$

Figure 8
Find the value of the load resistance R_{L} for maximum power transfer (to the load). Also, find the corresponding amount of maximum power.

$$
\begin{aligned}
R_{L}^{*} & =3 \Omega \\
\max P_{L} & =\frac{27}{4} \mathrm{~W}
\end{aligned}
$$

6. (2 pt) Suppose you want to use a 70Ω resistor but you only have two 60Ω resistors, one 30Ω resistor, and one 300Ω resistor. How would you connect the four resistors to get 70Ω ?
Draw and explain your answer.

\qquad ID
7. (4*pt) In this question, you must use the specified techniques to solve the problem. There will be no credit given if you do not follow the instructions. As always, your score depends strongly on your explanation of your answer. If the explanation is incomplete, zero score may be given even when the final answer is correct.

Consider the circuit in Figure 9.
Suppose $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=5 \Omega$, and $\mathrm{R}_{5}=11 \Omega$.

a. (2 pt) Find R_{eq} using nodal analysis.
b. (2 pt) Find R_{eq} using mesh analysis.

